Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (984) Expression Attributions Wiki
XB-ANAT-1564

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


Temporal pattern of appearance and distribution of cholecystokinin-like peptides during development in Xenopus laevis., Scalise FW., Gen Comp Endocrinol. November 1, 1988; 72 (2): 303-11.    


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


The anatomical substrate for telencephalic function., Veenman CL., Adv Anat Embryol Cell Biol. January 1, 1989; 117 1-110.


Central projections of the nervus terminalis in four species of amphibians., Hofmann MH., Brain Behav Evol. January 1, 1989; 34 (5): 301-7.


Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat., Wada E., J Comp Neurol. June 8, 1989; 284 (2): 314-35.


The nervus terminalis in larval and adult Xenopus laevis., Hofmann MH., Dev Biol. September 25, 1989; 498 (1): 167-9.


Selective expression of an amiloride-inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes., Kroll B., Am J Physiol. October 1, 1989; 257 (4 Pt 1): L284-8.


Neurons expressing thyrotropin-releasing hormone-like messenger ribonucleic acid are widely distributed in Xenopus laevis brain., Zoeller RT., Gen Comp Endocrinol. October 1, 1989; 76 (1): 139-46.      


Cleavage plane determination in amphibian eggs., Sawai T., Ann N Y Acad Sci. January 1, 1990; 582 40-9.


Inhibin and related proteins: localization, regulation, and effects., de Jong FH., Adv Exp Med Biol. January 1, 1990; 274 271-93.


A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA., Yisraeli JK., Development. February 1, 1990; 108 (2): 289-98.              


A stretch-activated K+ channel in the basolateral membrane of Xenopus kidney proximal tubule cells., Kawahara K., Pflugers Arch. February 1, 1990; 415 (5): 624-9.


Comparative neuroanatomy of the histaminergic system in the brain of the frog Xenopus laevis., Airaksinen MS., J Comp Neurol. February 15, 1990; 292 (3): 412-23.


Biochemical study of prolactin binding sites in Xenopus laevis brain and choroid plexus., Muccioli G., J Exp Zool. March 1, 1990; 253 (3): 311-8.


Dorsomedial telencephalon of lungfishes: a pallial or subpallial structure? Criteria based on histology, connectivity, and histochemistry., von Bartheld CS., J Comp Neurol. April 1, 1990; 294 (1): 14-29.


Thyroxine-dependent modulations of the expression of the neural cell adhesion molecule N-CAM during Xenopus laevis metamorphosis., Levi G., Development. April 1, 1990; 108 (4): 681-92.                


The Xenopus XIHbox 6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons., Wright CV., Development. May 1, 1990; 109 (1): 225-34.                


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


Characterization of stretch-activated ion channels in Xenopus oocytes., Yang XC., J Physiol. December 1, 1990; 431 103-22.


Na+ channel activity in cultured renal (A6) epithelium: regulation by solution osmolarity., Wills NK., J Membr Biol. April 1, 1991; 121 (1): 79-90.


Expression of Madin-Darby canine kidney cell Na(+)-and Cl(-)-dependent taurine transporter in Xenopus laevis oocytes., Uchida S., J Biol Chem. May 25, 1991; 266 (15): 9605-9.


Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian., Taylor JA., Horm Behav. June 1, 1991; 25 (2): 128-36.


Localized and inducible expression of Xenopus-posterior (Xpo), a novel gene active in early frog embryos, encoding a protein with a 'CCHC' finger domain., Sato SM., Development. July 1, 1991; 112 (3): 747-53.            


Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis., Kawahara A., Development. August 1, 1991; 112 (4): 933-43.            


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A., Development. August 1, 1991; 112 (4): 945-58.                


Evidence for direct estrogen regulation of the human gonadotropin-releasing hormone gene., Radovick S., J Clin Invest. November 1, 1991; 88 (5): 1649-55.


Interspecies comparisons of A/D ratios: A/D ratios are not constant across species., Daston GP., Fundam Appl Toxicol. November 1, 1991; 17 (4): 696-722.


Joint toxic action of binary mixtures of osteolathyrogens at malformation-inducing concentrations for Xenopus embryos., Dawson DA., J Appl Toxicol. December 1, 1991; 11 (6): 415-21.


Phylogeny of the third component of complement, C3: analysis of the conservation of human CR1, CR2, H, and B binding sites, concanavalin A binding sites, and thiolester bond in the C3 from different species., Alsenz J., Dev Comp Immunol. January 1, 1992; 16 (1): 63-76.


Pathways of NH3/NH4+ permeation across Xenopus laevis oocyte cell membrane., Burckhardt BC., Pflugers Arch. January 1, 1992; 420 (1): 83-6.


Proton transport mechanism in the cell membrane of Xenopus laevis oocytes., Burckhardt BC., Pflugers Arch. January 1, 1992; 420 (1): 78-82.


Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA., Dev Biol. March 1, 1992; 150 (1): 108-20.                  


Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis., Huang S., J Neurosci. April 1, 1992; 12 (4): 1351-62.                


Embryonic expression and functional analysis of a Xenopus activin receptor., Hemmati-Brivanlou A., Dev Dyn. May 1, 1992; 194 (1): 1-11.        


Spatial, temporal, and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis., Nishikawa A., Dev Biol. May 1, 1992; 151 (1): 145-53.                


Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction., Tannahill D., Development. July 1, 1992; 115 (3): 695-702.


Immunocytochemical localization of a galanin-like peptidergic system in the brain of two urodele and two anuran species (Amphibia)., Olivereau M., Histochemistry. August 1, 1992; 98 (1): 51-66.


Characterization of platelet-activating factor (PAF) receptor in the rat brain., Bito H., J Lipid Mediat. January 1, 1993; 6 (1-3): 169-74.


Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus., Christian JL., Genes Dev. January 1, 1993; 7 (1): 13-28.              


Comparative joint actions of semicarbazide and thiosemicarbazide on induction of malformations and osteolathyrism in mixtures with benzoic hydrazide., Dawson DA., Teratog Carcinog Mutagen. January 1, 1993; 13 (1): 23-33.


Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis., Lázár G., J Comp Neurol. January 22, 1993; 327 (4): 551-71.


XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula., Whitfield T., Dev Biol. February 1, 1993; 155 (2): 361-70.                  


Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis., González A., Anat Embryol (Berl). February 1, 1993; 187 (2): 193-201.


Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium., Séguéla P., J Neurosci. February 1, 1993; 13 (2): 596-604.


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


A Xenopus homebox gene defines dorsal-ventral domains in the developing brain., Saha MS., Development. May 1, 1993; 118 (1): 193-202.              


Expression of a Xenopus Distal-less homeobox gene involved in forebrain and cranio-facial development., Dirksen ML., Mech Dev. May 1, 1993; 41 (2-3): 121-8.        


The gamma-tubulin gene of the malaria parasite Plasmodium falciparum., Maessen S., Mol Biochem Parasitol. July 1, 1993; 60 (1): 27-35.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???