Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (328) Expression Attributions Wiki
XB-ANAT-452

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Functional screening in the melanophore bioassay., Jayawickreme C., Curr Protoc Pharmacol. July 1, 2005; Chapter 12 Unit12.9.


Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing., Andersson TP., Biosens Bioelectron. July 15, 2005; 21 (1): 111-20.


High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland., Wang L., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.


Xenopus as a model organism in developmental chemical genetic screens., Tomlinson ML., Mol Biosyst. September 1, 2005; 1 (3): 223-8.


Comparative genomics on SNAI1, SNAI2, and SNAI3 orthologs., Katoh M., Oncol Rep. October 1, 2005; 14 (4): 1083-6.


Identification of novel hexapeptide agonists at the Xenopus laevis melanophore melanocortin receptor., Iuga AO., Peptides. November 1, 2005; 26 (11): 2124-8.


Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf., Kumasaka M., Dev Dyn. November 1, 2005; 234 (3): 523-34.      


Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit., Zhang H., Gen Comp Endocrinol. January 15, 2006; 145 (2): 140-7.


Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17beta-estradiol): Support for the demasculinization/feminization hypothesis., Hayes TB., Environ Health Perspect. April 1, 2006; 114 Suppl 1 (Suppl 1): 134-41.                          


Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo., Aspengren S., Pigment Cell Res. April 1, 2006; 19 (2): 136-45.


Functional analysis of recombinant mutants of maxadilan with a PAC1 receptor-expressing melanophore cell line., Reddy VB., J Biol Chem. June 16, 2006; 281 (24): 16197-201.


Stable knock-down of vomeronasal receptor genes in transgenic Xenopus tadpoles., Kashiwagi A., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 140-7.          


Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores., Aspengren S., Cell Motil Cytoskeleton. July 1, 2006; 63 (7): 423-36.


Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland., Calle M., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.


The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish., Montero-Balaguer M., Dev Dyn. December 1, 2006; 235 (12): 3199-212.      


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis., Kidane AH., Gen Comp Endocrinol. January 1, 2007; 153 (1-3): 176-81.      


Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus., Garriock RJ., Dev Biol. April 1, 2007; 304 (1): 127-40.            


Design, synthesis and melatoninergic potency of new N-acyl 8,9-dihydro-4-methoxy-7H-2-benzo[de]quinolinalkanamines., Tsotinis A., Bioorg Chem. April 1, 2007; 35 (2): 189-204.


Regeneration of neural crest derivatives in the Xenopus tadpole tail., Lin G., BMC Dev Biol. May 24, 2007; 7 56.                    


7-Substituted-melatonin and 7-substituted-1-methylmelatonin analogues: effect of substituents on potency and binding affinity., Faust R., Bioorg Med Chem. July 1, 2007; 15 (13): 4543-51.


Design and synthesis of new N-OMe fluoro-indole melatoninergics., Tsotinis A., Med Chem. November 1, 2007; 3 (6): 561-71.


Rab32 regulates melanosome transport in Xenopus melanophores by protein kinase a recruitment., Park M., Curr Biol. December 4, 2007; 17 (23): 2030-4.


Design, synthesis, and melatoninergic activity of new azido- and isothiocyanato-substituted indoles., Tsotinis A., J Med Chem. December 13, 2007; 50 (25): 6436-40.


Bone morphogenetic protein-4 and Noggin signaling regulates pigment cell distribution in the axolotl trunk., Hess K., Differentiation. February 1, 2008; 76 (2): 206-18.


Mitf contributes to melanosome distribution and melanophore dendricity., Kawasaki A., Pigment Cell Melanoma Res. February 1, 2008; 21 (1): 56-62.


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Addressing variability in a Xenopus laevis melanophore cell line., Suska A., Assay Drug Dev Technol. August 1, 2008; 6 (4): 569-76.


Timeline and distribution of melanocyte precursors in the mouse heart., Brito FC., Pigment Cell Melanoma Res. August 1, 2008; 21 (4): 464-70.


Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores., Eriksson TL., J Ethnopharmacol. September 2, 2008; 119 (1): 17-23.


Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells., Morokuma J., Proc Natl Acad Sci U S A. October 28, 2008; 105 (43): 16608-13.                                  


A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification., Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.                          


A chemical genomic approach identifies matrix metalloproteinases as playing an essential and specific role in Xenopus melanophore migration., Tomlinson ML., Chem Biol. January 30, 2009; 16 (1): 93-104.


Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development., Tomlinson ML., Mol Biosyst. April 1, 2009; 5 (4): 376-84.


Dynamics of glucocorticoid and mineralocorticoid receptors in the Xenopus laevis pituitary pars intermedia., Roubos EW., Ann N Y Acad Sci. April 1, 2009; 1163 292-5.


Rapid responses of a melanophore cell line to chemical contaminants in water., Iuga A., J Appl Toxicol. May 1, 2009; 29 (4): 346-9.


Use of adenovirus for ectopic gene expression in Xenopus., Dutton JR., Dev Dyn. June 1, 2009; 238 (6): 1412-21.            


The dynamic properties of intermediate filaments during organelle transport., Chang L., J Cell Sci. August 15, 2009; 122 (Pt 16): 2914-23.                


Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved., Isoldi MC., Gen Comp Endocrinol. January 1, 2010; 165 (1): 104-10.          


Melanophores for microtubule dynamics and motility assays., Ikeda K., Methods Cell Biol. January 1, 2010; 97 401-14.


The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis., Almeida AD., Neural Dev. January 4, 2010; 5 1.                              


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


A proteome map of the pituitary melanotrope cell activated by black-background adaptation of Xenopus laevis., Bart D., Proteomics. February 1, 2010; 10 (3): 574-80.


The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos., Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.                                                    


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


A developmental analysis of periodic albinism in the amphibian Xenopus laevis., Eagleson GW., Gen Comp Endocrinol. September 1, 2010; 168 (2): 302-6.        


V-ATPase-mediated granular acidification is regulated by the V-ATPase accessory subunit Ac45 in POMC-producing cells., Jansen EJ., Mol Biol Cell. October 1, 2010; 21 (19): 3330-9.                


Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Cell Tissue Res. October 1, 2010; 342 (1): 53-66.                  


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3'-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura)., Park CJ., Chemosphere. November 1, 2010; 81 (10): 1292-300.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???