Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (328) Expression Attributions Wiki
XB-ANAT-452

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport., Reese EL., J Cell Biol. October 2, 2000; 151 (1): 155-66.              


Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis., Roosa JR., Brain Res Mol Brain Res. October 20, 2000; 82 (1-2): 35-51.            


Synthesis of phenalene and acenaphthene derivatives as new conformationally restricted ligands for melatonin receptors., Jellimann C., J Med Chem. November 2, 2000; 43 (22): 4051-62.


An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores., Teh MT., Br J Pharmacol. April 1, 2001; 132 (8): 1799-808.


Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation., Kramer BM., J Comp Neurol. April 9, 2001; 432 (3): 346-55.                    


Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis., Kolk SM., Endocrinology. May 1, 2001; 142 (5): 1950-7.


Efficient, long-term transgene expression in Xenopus laevis dermal melanophores., Gatlin J., Pigment Cell Res. August 1, 2001; 14 (4): 275-82.


Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis., Kramer BM., Microsc Res Tech. August 1, 2001; 54 (3): 188-99.


Synthesis of new tricyclic melatoninergic ligands., Tsotinis A., Farmaco. September 1, 2001; 56 (9): 725-9.


Expression of opsin molecule in cultured murine melanocyte., Miyashita Y., J Investig Dermatol Symp Proc. November 1, 2001; 6 (1): 54-7.


Identification of 3,4-didehydroretinal isomers in the Xenopus tadpole tail fin containing photosensitive melanophores., Okano K., Zoolog Sci. February 1, 2002; 19 (2): 191-5.


Interactions and regulation of molecular motors in Xenopus melanophores., Gross SP., J Cell Biol. March 4, 2002; 156 (5): 855-65.                  


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Biosensing of opioids using frog melanophores., Karlsson AM., Biosens Bioelectron. April 1, 2002; 17 (4): 331-5.


New aspects of signal transduction in the Xenopus laevis melanotrope cell., Roubos EW., Gen Comp Endocrinol. May 1, 2002; 126 (3): 255-60.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Characterization and functional expression of cDNAs encoding thyrotropin-releasing hormone receptor from Xenopus laevis., Bidaud I., Eur J Biochem. September 1, 2002; 269 (18): 4566-76.


Melanophore aggregation in strong static magnetic fields., Testorf MF., Bioelectromagnetics. September 1, 2002; 23 (6): 444-9.


Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface., Jenks BG., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.


Maxadilan activates PAC1 receptors expressed in Xenopus laevis xelanophores., Pereira P., Pigment Cell Res. December 1, 2002; 15 (6): 461-6.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Exposure to the polychlorinated biphenyl mixture Aroclor 1254 alters melanocyte and tail muscle morphology in developing Xenopus laevis tadpoles., Fisher MA., Environ Toxicol Chem. February 1, 2003; 22 (2): 321-8.


Dynactin is required for bidirectional organelle transport., Deacon SW., J Cell Biol. February 3, 2003; 160 (3): 297-301.      


Differential distribution of melatonin receptors in the pituitary gland of Xenopus laevis., Wiechmann AF., Anat Embryol (Berl). March 1, 2003; 206 (4): 291-9.


Environmental estrogens alter early development in Xenopus laevis., Bevan CL., Environ Health Perspect. April 1, 2003; 111 (4): 488-96.


Regulation of TNF-alpha secretion by a specific melanocortin-1 receptor peptide agonist., Ignar DM., Peptides. May 1, 2003; 24 (5): 709-16.


Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function., Jenks BG., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.


Synthesis and study of pigment aggregation response of some melatonin derivatives., Doss SH., Pharmazie. September 1, 2003; 58 (9): 607-13.


Microplate based biosensing with a computer screen aided technique., Filippini D., Biosens Bioelectron. October 30, 2003; 19 (1): 35-41.


Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores., Zubare-Samuelov M., Am J Physiol Cell Physiol. November 1, 2003; 285 (5): C1255-62.


Phosphoinositide 3-kinase is involved in Xenopus and Labrus melanophore aggregation., Andersson TP., Cell Signal. December 1, 2003; 15 (12): 1119-27.


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain., Kolk SM., Neuroscience. January 1, 2004; 128 (3): 531-43.


Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis., Wang LC., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.


Binding affinity and biological activity of oxygen and sulfur isosteres at melatonin receptors as a function of their hydrogen bonding capability., Davies DJ., Bioorg Chem. February 1, 2004; 32 (1): 1-12.


Mutational analysis of evolutionarily conserved ACTH residues., Costa JL., Gen Comp Endocrinol. March 1, 2004; 136 (1): 12-6.


Expression of vomeronasal receptor genes in Xenopus laevis., Hagino-Yamagishi K., J Comp Neurol. April 26, 2004; 472 (2): 246-56.                      


Isolation and developmental expression of Mitf in Xenopus laevis., Kumasaka M., Dev Dyn. May 1, 2004; 230 (1): 107-13.    


Unusual leucophore-like cells specifically appear in the lineage of melanophores in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Pigment Cell Res. June 1, 2004; 17 (3): 252-61.


Melatonin, melatonin receptors and melanophores: a moving story., Sugden D., Pigment Cell Res. October 1, 2004; 17 (5): 454-60.


Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles., Kashina AS., Curr Biol. October 26, 2004; 14 (20): 1877-81.        


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.


Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin., Isoldi MC., Proc Natl Acad Sci U S A. January 25, 2005; 102 (4): 1217-21.


Molecular cloning and characterization of a new RGS protein of Medaka., Itoh M., Gene. January 31, 2005; 345 (2): 165-71.


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


Regulation of bidirectional melanosome transport by organelle bound MAP kinase., Deacon SW., Curr Biol. March 8, 2005; 15 (5): 459-63.


The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells., van den Hurk MJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.


Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes., van den Hurk MJ., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.


Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells., Light W., Development. April 1, 2005; 132 (8): 1831-41.              


Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis., Calle M., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.              

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???