Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3352) Expression Attributions Wiki
XB-ANAT-302

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Visualization of the Xenopus primordial germ cells using a green fluorescent protein controlled by cis elements of the 3' untranslated region of the DEADSouth gene., Kataoka K., Mech Dev. October 1, 2006; 123 (10): 746-60.              


Functional analysis of Sox8 during neural crest development in Xenopus., O'Donnell M., Development. October 1, 2006; 133 (19): 3817-26.              


Tsukushi cooperates with VG1 to induce primitive streak and Hensen's node formation in the chick embryo., Ohta K., Development. October 1, 2006; 133 (19): 3777-86.    


Neural induction in Xenopus requires inhibition of Wnt-beta-catenin signaling., Heeg-Truesdell E., Dev Biol. October 1, 2006; 298 (1): 71-86.                    


Xtn3 is a developmentally expressed cardiac and skeletal muscle-specific novex-3 titin isoform., Brown DD., Gene Expr Patterns. October 1, 2006; 6 (8): 913-8.          


Developmental and regional expression of NADPH-diaphorase/nitric oxide synthase in spinal cord neurons correlates with the emergence of limb motor networks in metamorphosing Xenopus laevis., Ramanathan S., Eur J Neurosci. October 1, 2006; 24 (7): 1907-22.                  


The Xfeb gene is directly upregulated by Zic1 during early neural development., Li S., Dev Dyn. October 1, 2006; 235 (10): 2817-27.      


The Xdsg protein in presumptive primordial germ cells (pPGCs) is essential to their differentiation into PGCs in Xenopus., Ikenishi K., Dev Biol. September 15, 2006; 297 (2): 483-92.      


Hex acts with beta-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and Nodal., Zamparini AL., Development. September 1, 2006; 133 (18): 3709-22.                                    


Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis., Chalmers AD., Mech Dev. September 1, 2006; 123 (9): 702-18.                                                  


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain., Wilson NH., Dev Biol. August 15, 2006; 296 (2): 485-98.                      


Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation., Cao Y., Mech Dev. August 1, 2006; 123 (8): 614-25.            


Microgravity-induced modifications of the vestibuloocular reflex in Xenopus laevis tadpoles are related to development and the occurrence of tail lordosis., Horn ER., J Exp Biol. August 1, 2006; 209 (Pt 15): 2847-58.


The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen., Taelman V., Development. August 1, 2006; 133 (15): 2961-71.                  


Transgenic Xenopus laevis strain expressing cre recombinase in muscle cells., Waldner C., Dev Dyn. August 1, 2006; 235 (8): 2220-8.          


Metastasis-associated kinase modulates Wnt signaling to regulate brain patterning and morphogenesis., Kibardin A., Development. August 1, 2006; 133 (15): 2845-54.                    


Role for retinoid signaling in left-right asymmetric digestive organ morphogenesis., Lipscomb K., Dev Dyn. August 1, 2006; 235 (8): 2266-75.    


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development., Lane MC., Dev Biol. August 1, 2006; 296 (1): 12-28.                


Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo., Cox CM., Dev Biol. August 1, 2006; 296 (1): 177-89.                  


A novel gene, Ami is expressed in vascular tissue in Xenopus laevis., Inui M., Gene Expr Patterns. August 1, 2006; 6 (6): 613-9.        


Expression of TFAP2beta and TFAP2gamma genes in Xenopus laevis., Zhang Y., Gene Expr Patterns. August 1, 2006; 6 (6): 589-95.      


FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos., Sweetman D., Dev Dyn. August 1, 2006; 235 (8): 2185-91.  


Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles., Frigato E., Naturwissenschaften. August 1, 2006; 93 (8): 379-85.


Development of the primary mouth in Xenopus laevis., Dickinson AJ., Dev Biol. July 15, 2006; 295 (2): 700-13.                


Neofunctionalization in vertebrates: the example of retinoic acid receptors., Escriva H., PLoS Genet. July 1, 2006; 2 (7): e102.                  


Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning., Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.                            


PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus., Rangarajan J., Dev Biol. July 1, 2006; 295 (1): 206-18.              


Differential role of 14-3-3 family members in Xenopus development., Lau JM., Dev Dyn. July 1, 2006; 235 (7): 1761-76.                                                    


Isolation and characterization of a novel gene, xMADML, involved in Xenopus laevis eye development., Elkins MB., Dev Dyn. July 1, 2006; 235 (7): 1845-57.                  


Xenopus fibrillin is expressed in the organizer and is the earliest component of matrix at the developing notochord-somite boundary., Skoglund P., Dev Dyn. July 1, 2006; 235 (7): 1974-83.            


Analysis of mouse EphA knockins and knockouts suggests that retinal axons programme target cells to form ordered retinotopic maps., Willshaw D., Development. July 1, 2006; 133 (14): 2705-17.  


Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis., Calle M., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.        


Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system., Pasini A., PLoS Biol. July 1, 2006; 4 (7): e225.              


TBX5 is required for embryonic cardiac cell cycle progression., Goetz SC., Development. July 1, 2006; 133 (13): 2575-84.                


The role of Paraxial Protocadherin in Xenopus otic placode development., Hu RY., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 239-47.            


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


Genomic analysis of Xenopus organizer function., Hufton AL., BMC Dev Biol. June 6, 2006; 6 27.                  


Eye and neural defects associated with loss of GDF6., Hanel ML., BMC Dev Biol. June 6, 2006; 6 43.          


Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue., Afelik S., Genes Dev. June 1, 2006; 20 (11): 1441-6.                        


Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase., Koide T., Development. June 1, 2006; 133 (12): 2395-405.                


Control of muscle regeneration in the Xenopus tadpole tail by Pax7., Chen Y, Chen Y., Development. June 1, 2006; 133 (12): 2303-13.    


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


Enantiomers of neuroactive steroids support a specific interaction with the GABA-C receptor as the mechanism of steroid action., Li W., Mol Pharmacol. June 1, 2006; 69 (6): 1779-82.


Developmental expression patterns of Tbx1, Tbx2, Tbx5, and Tbx20 in Xenopus tropicalis., Showell C., Dev Dyn. June 1, 2006; 235 (6): 1623-30.                      


Developmental expression of FoxJ1.2, FoxJ2, and FoxQ1 in Xenopus tropicalis., Choi VM., Gene Expr Patterns. June 1, 2006; 6 (5): 443-7.      


Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons., Vernon AE., EMBO Rep. June 1, 2006; 7 (6): 643-8.


The effect of VEGF on blood vessels and blood cells during Xenopus development., Koibuchi N., Biochem Biophys Res Commun. May 26, 2006; 344 (1): 339-45.        


The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition., Cruciat CM., J Biol Chem. May 5, 2006; 281 (18): 12986-93.                        

???pagination.result.page??? ???pagination.result.prev??? 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 ???pagination.result.next???