Results 1 - 23 of 23 results
Engineered transfer RNAs for suppression of premature termination codons. , Lueck JD., Nat Commun. February 18, 2019; 10 (1): 822.
Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. , Steimle JD., Proc Natl Acad Sci U S A. November 6, 2018; 115 (45): E10615-E10624.
Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress. , Vitzthum C., Biochim Biophys Acta. November 1, 2015; 1848 (11 Pt A): 2942-51.
Actions of hydrogen sulfide on sodium transport processes across native distal lung epithelia (Xenopus laevis). , Erb A., PLoS One. June 10, 2014; 9 (6): e100971.
Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels. , Richter K ., FASEB J. January 1, 2014; 28 (1): 45-55.
Plasticity of lung development in the amphibian, Xenopus laevis. , Rose CS., Biol Open. December 15, 2013; 2 (12): 1324-35.
Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. , Londino JD., Am J Physiol Lung Cell Mol Physiol. May 1, 2013; 304 (9): L582-92.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency. , Hammachi F., Cell Rep. February 23, 2012; 1 (2): 99-109.
Basolateral Cl- uptake mechanisms in Xenopus laevis lung epithelium. , Berger J., Am J Physiol Regul Integr Comp Physiol. July 1, 2010; 299 (1): R92-100.
Alpha(1)-antitrypsin inhibits epithelial Na+ transport in vitro and in vivo. , Lazrak A., Am J Respir Cell Mol Biol. September 1, 2009; 41 (3): 261-70.
Slc26a9--anion exchanger, channel and Na+ transporter. , Chang MH., J Membr Biol. April 1, 2009; 228 (3): 125-40.
Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels. , Bogdan R., Pflugers Arch. September 1, 2008; 456 (6): 1109-20.
CFTR-dependent Cl- secretion in Xenopus laevis lung epithelium. , Sommer D., Respir Physiol Neurobiol. August 15, 2007; 158 (1): 97-106.
Regulatory interaction between CFTR and the SLC26 transporters. , Shcheynikov N., Novartis Found Symp. January 1, 2006; 273 177-86; discussion 186-92, 261-4.
Prostaglandin E2 induces upregulation of Na+ transport across Xenopus lung epithelium. , Berk A., J Comp Physiol B. January 1, 2004; 174 (1): 83-9.
Developmental expression of the Xenopus laevis Tbx20 orthologue. , Brown DD ., Dev Genes Evol. January 1, 2003; 212 (12): 604-7.
Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. , Lohi H., J Biol Chem. April 19, 2002; 277 (16): 14246-54.
Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. , Ishikawa T., Development. January 1, 2001; 128 (1): 25-33.
Analysis of chicken Wnt-13 expression demonstrates coincidence with cell division in the developing eye and is consistent with a role in induction. , Jasoni C., Dev Dyn. July 1, 1999; 215 (3): 215-24.
Structure and expression of Wnt13, a novel mouse Wnt2 related gene. , Zakin LD., Mech Dev. April 1, 1998; 73 (1): 107-16.
Amphibian development in the virtual absence of gravity. , Souza KA., Proc Natl Acad Sci U S A. March 14, 1995; 92 (6): 1975-8.
Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action. , Fischer H., Pflugers Arch. April 1, 1990; 416 (1-2): 62-7.