Results 1 - 50 of 1657 results
Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. , Houston DW ., Development. September 1, 2022; 149 (17):
Positive feedback regulation of frizzled-7 expression robustly shapes a steep Wnt gradient in Xenopus heart development, together with sFRP1 and heparan sulfate. , Yamamoto T ., Elife. August 9, 2022; 11
Functions of block of proliferation 1 during anterior development in Xenopus laevis. , Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.
Xenopus Dusp6 modulates FGF signaling to precisely pattern pre-placodal ectoderm. , Tsukano K., Dev Biol. August 1, 2022; 488 81-90.
Normal Table of Xenopus development: a new graphical resource. , Zahn N ., Development. July 15, 2022; 149 (14):
Embryonic and aglomerular kidney development in the bay pipefish, Syngnathus leptorhynchus. , Maters BR ., PLoS One. May 12, 2022; 17 (5): e0267932.
Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. , Patel JH., Dev Biol. March 1, 2022; 483 157-168.
Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RWd. , Lee H , Lee H ., J Biol Chem. February 1, 2022; 298 (2): 101586.
Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network. , Wu Y., Elife. January 20, 2022; 11
Systematic mapping of rRNA 2''-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal- ventral pattern in Xenopus laevis embryos. , Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.
Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 844619.
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 857230.
Fluid Mechanics of Mosaic Ciliated Tissues. , Boselli F., Phys Rev Lett. November 5, 2021; 127 (19): 198102.
Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. , Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.
A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. , Pokrovsky D., PLoS Biol. September 7, 2021; 19 (9): e3001377.
The dual-specificity protein kinase Clk3 is essential for Xenopus neural development. , Virgirinia RP., Biochem Biophys Res Commun. August 27, 2021; 567 99-105.
RNA m6A Methyltransferase Mettl3 Regulates Spatial Neural Patterning in Xenopus laevis. , Kim H ., Mol Cell Biol. July 23, 2021; 41 (8): e0010421.
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. , Yedavalli VRK., Retrovirology. July 14, 2021; 18 (1): 20.
Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. , Karlsson O., Sci Total Environ. June 25, 2021; 775 145771.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus. , Zhang F., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis. , Otsuka-Yamaguchi R., Stem Cell Res. May 1, 2021; 53 102341.
RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. , Kim H ., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.
Microvascular anatomy of the urinary bladder in the adult African clawed toad, Xenopus laevis: A scanning electron microscope study of vascular casts. , Lametschwandtner A., J Morphol. March 1, 2021; 282 (3): 368-377.
Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds. , Kowalczyk I., Development. January 26, 2021; 148 (2):
Purified Bighead protein efficiently promotes head development in the South African clawed frog, Xenopus laevis. , Colozza G ., MicroPubl Biol. January 5, 2021; 2021
Epigenetic control of myeloid cells behavior by Histone Deacetylase activity (HDAC) during tissue and organ regeneration in Xenopus laevis. , Pentagna N., Dev Comp Immunol. January 1, 2021; 114 103840.
Establishing embryonic territories in the context of Wnt signaling. , Velloso I., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.
Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels. , Kawai T., J Biol Chem. January 1, 2021; 296 100783.
Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. , Lee H , Lee H ., Antioxidants (Basel). December 12, 2020; 9 (12):
In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces. , Dur AH., Fluids Barriers CNS. December 11, 2020; 17 (1): 72.
An integrated approach to assess the sublethal effects of colloidal gold nanorods in tadpoles of Xenopus laevis. , Costa B., J Hazard Mater. December 5, 2020; 400 123237.
The tetraspanin Cd63 is required for eye morphogenesis in Xenopus. , Kreis J., MicroPubl Biol. November 27, 2020; 2020
STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells. , Jin L., Nat Commun. November 23, 2020; 11 (1): 5941.
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. , Huang X ., Genes (Basel). November 18, 2020; 11 (11):
A laboratory investigation into features of morphology and physiology for their potential to predict reproductive success in male frogs. , Orton F., PLoS One. November 11, 2020; 15 (11): e0241625.
De novo mutations in FBRSL1 cause a novel recognizable malformation and intellectual disability syndrome. , Ufartes R., Hum Genet. November 1, 2020; 139 (11): 1363-1379.
Endoparasites infecting exotic captive amphibian pet and zoo animals (Anura, Caudata) in Germany. , Hallinger MJ., Parasitol Res. November 1, 2020; 119 (11): 3659-3673.
Mcrs1 interacts with Six1 to influence early craniofacial and otic development. , Neilson KM ., Dev Biol. November 1, 2020; 467 (1-2): 39-50.
Developmentally-programmed cellular senescence is conserved and widespread in zebrafish. , Da Silva-Álvarez S., Aging (Albany NY). September 29, 2020; 12 (18): 17895-17901.
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. , Vonica A ., Dev Biol. August 1, 2020; 464 (1): 71-87.
Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. , Lokapally A., Cells. July 20, 2020; 9 (7):