Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Literature (19)
Literature for DOID 440: neuromuscular disease


Xenbase Articles :
( Denotes literature images)
Mutation of single murine acetylcholine receptor subunits reveals differential contribution of P121 to acetylcholine binding and channel opening., Peter C,Korngreen A,Witzemann V, Pflugers Arch. June 1, 2005; 450(3):1432-2013.
Severe neuropathy with leaky connexin32 hemichannels., Liang GS,de Miguel M,Gómez-Hernández JM,Glass JD,Scherer SS,Mintz M,Barrio LC,Fischbeck KH, Ann Neurol. May 1, 2005; 57(5):1531-8249.
Pathogenesis of X-linked Charcot-Marie-Tooth disease: differential effects of two mutations in connexin 32., Abrams CK,Freidin M,Bukauskas F,Dobrenis K,Bargiello TA,Verselis VK,Bennett MV,Chen L,Sahenk Z, J Neurosci. November 19, 2003; 23(33):1529-2401.
Rapid functional analysis in Xenopus oocytes of Po protein adhesive interactions., Yoshida M,Colma DR, Neurochem Res. June 1, 2001; 26(6):1573-6903.
Functional alterations in gap junction channels formed by mutant forms of connexin 32: evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot-Marie-Tooth disease., Abrams CK,Freidin MM,Verselis VK,Bennett MV,Bargiello TA, Dev Biol. May 4, 2001; 900(1):0012-1606.
Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2)., Gao B,Sekido Y,Maximov A,Saad M,Forgacs E,Latif F,Wei MH,Lerman M,Lee JH,Lee JH,Perez-Reyes E,Bezprozvanny I,Minna JD, J Biol Chem. April 21, 2000; 275(16):1083-351X.
Slow-channel transgenic mice: a model of postsynaptic organellar degeneration at the neuromuscular junction., Gomez CM,Maselli R,Gundeck JE,Chao M,Day JW,Tamamizu S,Lasalde JA,McNamee M,Wollmann RL, J Neurosci. June 1, 1997; 17(11):1529-2401.
A transgenic mouse model of the slow-channel syndrome., Gomez CM,Bhattacharyya BB,Charnet P,Day JW,Labarca C,Wollmann RL,Lambert EH, Muscle Nerve. January 1, 1996; 19(1):1097-4598.
Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor's activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome., Báez-Pagán CA,Martínez-Ortiz Y,Otero-Cruz JD,Salgado-Villanueva IK,Velázquez G,Ortiz-Acevedo A,Quesada O,Silva WI,Lasalde-Dominicci JA, Channels (Austin). January 1, 2008; 2(3):1933-6969.
Acetylcholine receptor gating in a zebrafish model for slow-channel syndrome., Walogorsky M,Mongeon R,Wen H,Mandel G,Brehm P, J Neurosci. June 6, 2012; 32(23):1529-2401.
Using Xenopus tissue cultures for the study of myasthenia gravis pathogenesis., Yeo HL,Lim JY,Fukami Y,Yuki N,Lee CW,Lee CW,Lee CW, Dev Biol. December 15, 2015; 408(2):1095-564X.
Using Xenopus to understand human disease and developmental disorders., Sater AK,Moody SA, Genesis. January 1, 2017; 55(1-2):1526-968X.
De novo variants in SLC12A6 cause sporadic early-onset progressive sensorimotor neuropathy., Park J,Flores BR,Scherer K,Kuepper H,Rossi M,Rupprich K,Rautenberg M,Deininger N,Weichselbaum A,Grimm A,Sturm M,Grasshoff U,Delpire E,Haack TB, J Med Genet. April 1, 2020; 57(4):1468-6244.
Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons., Cioni JM,Lin JQ,Holtermann AV,Koppers M,Jakobs MAH,Azizi A,Turner-Bridger B,Shigeoka T,Franze K,Harris WA,Holt CE, Cell. January 10, 2019; 176(1-2):1097-4172.
Grp94 Regulates the Recruitment of Aneural AChR Clusters for the Assembly of Postsynaptic Specializations by Modulating ADF/Cofilin Activity and Turnover., Chan ZC,Deng L,Lee CW,Lee CW,Lee CW, eNeuro. September 8, 2020; 7(5):2373-2822.
Building neuromuscular junctions in vitro., Barbeau S,Tahraoui-Bories J,Legay C,Martinat C, Development. November 16, 2020; 147(22):1477-9129.
GlyT1 encephalopathy: Characterization of presumably disease causing GlyT1 mutations., Hauf K,Barsch L,Bauer D,Buchert R,Armbruster A,Frauenfeld L,Grasshoff U,Eulenburg V, Neurochem Int. October 1, 2020; 139:1872-9754.
The phenotypic spectrum of pathogenic ATP1A1 variants expands: the novel p.P600R substitution causes demyelinating Charcot-Marie-Tooth disease., Cinarli Yuksel F,Nicolaou P,Spontarelli K,Dohrn MF,Rebelo AP,Koutsou P,Georghiou A,Artigas P,Züchner SL,Kleopa KA,Christodoulou K, J Neurol. May 1, 2023; 270(5):1432-1459.
Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery., O'Connor EC,Kambara K,Bertrand D, Expert Opin Drug Discov. February 1, 2024; 19(2):1746-045X.